
1

Armstrong State University
Engineering Studies

MATLAB Marina – Functions Exercises

1. How does one call a MATLAB function? What must the function call provide to the function?

What is generally done with the result returned from the function?
2. Complete the MATLAB program of Figure 1 that will call the built in MATLAB trigonometric

functions cos, sin, and tan for an angle of 4
π radians and display the results of the

operations. What do MATLAB’s trigonometric functions return for scalar arguments?

3. Complete the MATLAB program of Figure 2 that will call the built in MATLAB trigonometric

functions cos, sin, and tan for a vector of the angles 0 radians, 4
π radians, and 2

π
radians and display the results of the operations. What do MATLAB’s trigonometric
functions return for vector arguments?

4. Complete the MATLAB function of Figure 3 named evalCubic that will evaluate a generic

cubic polynomial function () 3 2
3 2 1 0g x a x a x a x a= + + + for a scalar value of x. The argument

ak should be a vector of four coefficients []3 2 1 0,a a ,a ,a ; ak(1) will hold the polynomial

coefficient 3a , ak(2) will hold the polynomial coefficient 2a , ak(3) will hold the
polynomial coefficient 1a , and ak(4) will hold the polynomial coefficient 0a . The
argument x and return parameter gg should be scalars.

% angle in radians
angle = pi/4;

% call trigonometric functions

% display results

Figure 1, MATLAB Program to Evaluate Built in Trigonometric Functions for Scalar Arguments

% angles in radians
angles = [0, pi/4, pi/2];

% call trigonometric functions

% display results

Figure 2, MATLAB Program to Evaluate Built in Trigonometric Functions for Vector
Argument

2

5. Determine an appropriate set of test cases to test the evalCubic function from Exercise

4. Write a test program to verify the correct operation of evalCubic function for the
determined test cases.

6. Modify your evalCubic function from Exercise 4 so that it will work for a vector
argument x. The function definition will not need to be altered but the argument x will now
be a vector of real numbers and the function should return a result of the same length as
the argument x. Hint: you should only need to modify the evaluation of the function to use
array operations where appropriate.

7. Write a test program to call the evalCubic function from Exercise 6 to verify the correct
operation of the function for the test cases: []0,2, 1,5ak = − and 1x = and []0,2, 1,5ak = −

and []5 : 0.1: 5x = − . Note: this is not a full set of test cases.
8. Modify your evalCubic function from Exercise 6 so that if an empty vector for either the

ak or x parameters is passed to the function, the function will display an error message will
be displayed and the function will return an empty vector as the result. Hint: this can be
done using inline error handling.

9. Write a test program to call the evalCubic function from Exercise 8 to verify the correct
operation of the function for the test cases: []0,2, 1,5ak = − and 1x = , []0,2, 1,5ak = − and

[]5 : 0.1: 5x = − , and []0,2, 1,5ak = − and []x = . Note: this is not a full set of test cases.

10. Write a program to plot the function () 7.82.475.3 23 ++−= xxxxg for the range

[]10 : 0.1:10x = − . Use the evalCubic function from Exercise 8 to evaluate the
polynomial function.

11. Determine an appropriate set of test cases and write a test program for the
incrementByN MATLAB function of Figure 4. Verify that the incrementByN function
operates correctly.

function gg = evalCubic(ak, x)
% ---
% evalCubic.m
% ---
% evalCubic evaluates the cubic polynomial function
% f(x) = a3*x^3 + a2*x^2 + a1*x + a0
% ---
% usage: gg = evalCubic(ak, x)
% ak = 1 by 4 vector of polynomial coefficients
% x = scalar real number
% gg = cubic polynomial evaluated for x
% ---

Figure 3, evalCubic Function

3

12. What determines the number of results that a MATLAB function returns to the calling

statement?
13. What order (left to right or right to left) are function arguments matched for a function call?

Which function arguments can be set of as optional arguments?
14. Write a MATLAB function polarToRect that will convert two-dimensional polar

coordinates to rectangular coordinates. Use the following function below as a starting
point.
function [x, y] = polarToRect(r, theta)

15. Modify your polarToRect function of Exercise 14 so that it can operate on vectors of
coordinates. In other words, the polarToRect function should take two vectors r and
theta of the polar coordinates and return two vectors x and y of the corresponding
rectangular coordinates. The function definition will be the same as in Exercise 14.

16. Write a test program that verifies the correct operation of your polarToRect function
from Exercise 15 for the test cases: r = 1 and theta = π/4 radians and r = [1, 3, 1] and theta =
[π/4, 3π/2, 0] radians.

17. Modify your polarToRect function from Exercise 15 so that the function ensures the two
vectors r and theta are the same length. If the vectors have different lengths, an error
message should be displayed and an empty set should be returned for both x and y. Test
the modified polarToRect function using the same test program as used in Exercise 16
but add a test case to test the error checking. Hint: enclose the function body of the
previous polarToRect function with a conditional structure that will ensure that the
vectors have the same before performing the conversion.

18. What does a programmer need to determine before writing the function definition?

function result = incrementByN(value, n)
% ---
% incrementByN.m
% ---
% incrementByN returns the value incremented by n
% ---
% usage: result = incrementByN(value, n)
% value = value to increment
% n = amount to increment by
% result = value incremented by n
% ---
% Notes: if n is not supplied the default n is 1
% ---
if (nargin < 2)
 n = 1;
end
result = value + n;
end

Figure 4, incrementByN Function

4

19. Why is a proper comment header necessary for user created functions?
20. How does one test a function to verify that it operates according to the specifications?
21. Write a MATLAB function sumPartial that will take a vector and two indices and sum

the vector elements between and including the two indices. Use the sumVector function
of Figure 5 as a starting point. Hints: first determine the function arguments and return
variables then determine what in the sumVector function needs to be modified for the
new function. Invoking the function sumpartial with the vector [3, -1, 2, 4, 8,
-1, 0, 7] and indices of 2 and 5 should return a sum of -1 + 2 + 4 + 8 = 13.

22. Determine an appropriate set of test cases to test the sumPartial function written for

Exercise 21. Write a test program to verify the correct operation of the sumPartial
function for each test case.

23. Modify the sumPartial function written for Exercise 21 so that
• If the function is invoked for an empty vector that an empty vector is returned as the

result. Hint: MATLAB has an isempty function that returns 1 if the array is empty and
0 otherwise.

• If the function is invoked for a start index less than zero or an end index greater than the
length of the vector that an empty vector is returned as the result.

24. Determine an appropriate set of test cases to test the modified sumPartial function
written for Exercise 23. Write a test program to verify the correct operation of the
sumPartial function for each test case.

25. What will happen if the modified sumPartial function from Exercise 23 is invoked for a
start index equal to the end index or a start index greater than the end index?

function result = sumVector(x)
% ---
% sumVector.m
% ---
% sumVector sums the elements of a vector
% ---
% Syntax: result = sumVector(x)
% x is the vector of numbers
% result is the sum of the elements in the vector
% ---
% Examples: r = sumVector([6, 3, 8, 12]); results in r = 29
% ---

result = 0.0;
for k = 1:1:length(x)
 result = result + x(k);
end
end

Figure 5, sumVector Function

5

26. Write a MATLAB function named readPositiveNumber that will return a number

greater than or equal to zero (a positive number or zero) read from the user. The function
should ensure that the number returned is greater than or equal to zero and should keep
reading in numbers from the user until a valid number is entered. Use the function
definition below as a starting point.
function result = readPositiveNumber()
Note: it is appropriate to perform input in the readPositiveNumber function since that
is the only operation that the function will perform. It will read in a positive number (or as
many numbers as it takes to get a positive number) and return the positive number to the
calling program.

27. Determine an appropriate set of test cases to test the readPositiveNumber function
written for Exercise 26. Verify the correct operation of the readPositiveNumber
function at the MATLAB Command line for each test case.

28. Write a MATLAB function named buildPositiveVector that will create and return a
row vector of positive numbers. The function will take the number of elements and return
the created row vector. Use the readPositiveNumber function developed for Exercise
26 to read in positive numbers; in other words invoke the readPositiveNumber
function inside the buildPositiveVector function to read in each positive number.
Use the function definition below as a starting point.
function result = buildPositiveVector(numberElements)

29. Determine an appropriate set of test cases to test the buildPositiveVector function
written for Exercise 28. Verify the correct operation of the buildPositiveVector
function at the MATLAB Command line for each test case.

30. Write a MATLAB function to compute the geometric mean of a set of numbers. You may
assume the set of numbers is a row vector. The geometric mean of a set of numbers

()nxxxxx ,,,, 321 = is ()n
nxxxxG

1

321 ⋅⋅⋅⋅= ; in other words the product of all the
elements raised to the power of one over the number of elements. Solve this two ways: by
iterating over the indices of the vector and using indexing, and scalar operations and by
iterating over the data and use scalar operations.

31. Determine an appropriate set of test cases to test the geometric mean function from
Exercise 30. Write a test program to verify the correct operation of the geometric mean
functions for each test case.

Last modified Friday, September 26, 2014

This work by Thomas Murphy is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0
Unported License.

http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US

